
Types at the edge of your system
Find and fix your TypeScript blind spots 🔦

Slides@nicoespeon — ConFoo 2023

Or why it matters

Check the source

https://www.theverge.com/2022/2/9/22925619/mazda-head-units-bricked-npr-seattle-need-ota-updates

 @nicoespeon

understandlegacycode.com

Nicolas Carlo
Senior TS Developer

Legacy Code specialist

https://understandlegacycode.com/

TS is great, but…

TS catches type errors at compilation time

󰳕
Write Code

📦
Compile to JS

🚀
Run in Prod

Raise errors here Before it’s too late

Yet, you may still have type errors in Prod with TS

“Wait, how is that possible?!!”
— Confused developers

There are blind spots
in your TS code 👻

Examples of blind spots 🙈

Wrong types (eg. array[0])

any

@ts-ignore

❌

Most of these are solved with TS itself

OK…
but is it frequent?

Wrong types (eg. array[0])

any

@ts-ignore

unknown

@ts-expect-error

❌ ✅

https://mariusschulz.com/blog/the-unknown-type-in-typescript
https://typescript-eslint.io/rules/prefer-ts-expect-error/

Yes, you have more wrong types than you think…

(1) User Inputs

(1A) User inputs, you handle the client & the server

1. Validate user inputs on the client

2. Share API types (eg. Advanced TypeScript Patterns: API Contracts)

https://www.jonmellman.com/posts/typescript-for-api-contracts

(1B) User inputs, you handle the server

1. Validate user inputs

“How to keep types & validation in sync?”

“And docs?”

��

(1C) User inputs, you handle the client

💡 This is the SAME situation
as 2) Third Party APIs

(2) Third Party APIs

(2) Third Party APIs have different levels of trust

�� “How do you ensure types are
the ones you expect?”

You have a typed SDK You have online documentation

You some form of documentation You don’t have up-to-date docs

(3) Databases

(3) Databases seem trustworthy. But wait…

❏ Are there enforced schemas for the stored data?
❏ Are the schemas connected to your type definitions?
❏ Can people change the data without using your application?
❏ Are there scripts that may update the data without using your application?
❏ Are there other applications that can update the data?

�� “How to know if fetched data

have the expected format?”

Data entering your system
may not respect
your type definitions 😬

Tackling TS blind spots

1. Validate entering data

2. Generate types from
validation schemas

One tool that can help: zod

github.com/colinhacks/zod

“TypeScript-first schema validation with static type inference”

import { z } from "zod";

// 1. Create a schema
const mySchema = z.string();

// 2a. Parse
mySchema.parse("tuna"); // => "tuna"
mySchema.parse(12); // => throws ZodError

// 2b. Safe parsing (doesn't throw error if validation fails)
mySchema.safeParse("tuna"); // => { success: true; data: "tuna" }
mySchema.safeParse(12); // => { success: false; error: ZodError }

https://github.com/colinhacks/zod

One tool that can help: zod

github.com/colinhacks/zod

“TypeScript-first schema validation with static type inference”

import { z } from "zod";

const userSchema = z.object({
 username: z.string(),
});

// 3. Extract the inferred type
type User = z.infer<typeof userSchema>;
// ^? { username: string }

https://github.com/colinhacks/zod

Let’s see some code 󰞵

Answering our questions 🗳

“How to keep types & validation in sync?”

👉 Generate the types from the validation schema.

import { z } from "zod";

export const userSchema = z.object({
 username: z.string(),
});

export type User = z.infer<typeof userSchema>;

“And docs?”

Generate docs, types and schemas from OpenAPI specs

Tools examples:

➔ swagger-api/swagger-ui for interactive docs from OpenAPI specs
➔ drwpow/openapi-typescript + fabien0102/ts-to-zod
➔ nelsongomes/ts-openapi (uses Joi, alternative to Zod)

https://www.openapis.org/
https://github.com/swagger-api/swagger-ui
https://github.com/drwpow/openapi-typescript
https://github.com/fabien0102/ts-to-zod
https://github.com/nelsongomes/ts-openapi

“And docs?” OpenAPI
specs

TS Types

Zod
schemas

swagger-ui

ts-to-zod

openapi-typescript

https://github.com/swagger-api/swagger-ui
https://github.com/fabien0102/ts-to-zod
https://github.com/drwpow/openapi-typescript

“How do you ensure types are the ones you expect?”

Type unknown the responses and validate the data match your expectations

const response = await fetch("https://api.github.com/users/octocat");

const data = await response.json() as unknown;

const result = userSchema.safeParse(data);

if (!result.success) {

 throw new ValidationError(result.error);

}

const user = result.data;

// ^? { name: string }

“How to know fetched data have the expected format?”

Type unknown the fetched data and validate the data match your expectations

export async function findUser(id: string): Promise<User> {

 const data = await db.doc(`users/${id}`).get();

 const result = userSchema.safeParse(data);

 if (!result.success) {

 throw new ValidationError(result.error);

 }

 return result.data;

}

Your TS app is now safe from type errors!

Don’t type
what you don’t own

1. Validate entering data

2. Generate types from
validation schemas

Questions you may have…

“Oh, I think we use something similar…”

Zod isn’t the only schema validator lib out there, but it’s really great with TS

Alternatives:

★ yup
★ joi.dev
★ io-ts
★ runtypes

https://github.com/jquense/yup
https://joi.dev/
https://github.com/gcanti/io-ts
https://github.com/pelotom/runtypes

Should we do that at all the edges?

It Depends™. Probably not.

How confident you are about these types?

Did you have type errors because you received unexpected data?

Start with the riskiest part of your app. Iterate.

Will we get fewer runtime errors?

Yes!

You may see more errors at first -> your expectations mismatch reality

Before, these would have gone ignored until very late.

What about the performance?

★ Zod used to be among the slowest schema validators
★ Parsing performance has improved
★ In my experience, it’s not the bottleneck

When it comes to performance: measure and compare metrics

If perfs are super critical, maybe TS isn’t the best choice for your use-case

https://moltar.github.io/typescript-runtime-type-benchmarks/
https://github.com/colinhacks/zod/issues/205

“There is this other team we depend on…”

Conway Law!

My advice:

1. Identify the relationships w/ Context Maps

2. Use namespace to version shared types
Eg. V12.GetUser ≠ V13.GetUser

https://www.oreilly.com/library/view/what-is-domain-driven/9781492057802/ch04.html#:~:text=The%20context%20map%20is%20a,Communication%20patterns

Going further with zod

Out-of-scope, but I recommend you check:

➔ refine() to provide custom validation logic
➔ brand() to prevent mixing concepts & enforce validation

https://github.com/colinhacks/zod#refine
https://github.com/colinhacks/zod#brand

To dig further
Related and useful resources

🤔 Why array[0] doesn’t return
T | undefined by default?

📝 Parse, don’t validate

📝 Advanced TS Patterns: API
Contracts

🍿 Fixing TypeScript's Blindspot
(~15’)

🧰 colinhacks/zod

🧰 TS to Zod (online)

🧰 fabien0102/ts-to-zod

Slides at bit.ly/typing-the-edges

https://stackoverflow.com/a/50647536
https://stackoverflow.com/a/50647536
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://www.jonmellman.com/posts/typescript-for-api-contracts
https://www.jonmellman.com/posts/typescript-for-api-contracts
https://www.youtube.com/watch?v=rY_XqfSHock
https://github.com/colinhacks/zod
https://transform.tools/typescript-to-zod
https://github.com/fabien0102/ts-to-zod
https://bit.ly/typing-the-edges

