
MenderCon 2021

7 techniques to tame a
Legacy Codebase
> Nicolas Carlo

1

Legacy Code is profitable code 
you are afraid to change

2

Legacy Code is profitable code 
you are afraid to change

3

Legacy Code is profitable code 
you are afraid to change

4

5

Outdated docs
No test

Sh
or
t
de
ad
li
ne

YOU

Nicolas Carlo
 @nicoespeon

Tech Lead @ Busbud

6

understandlegacycode.com

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

7

Architecture Decision Records
Never gets outdated!

• Log decision taken now to revisit in the future

• Detail the context around the decision

• You can't be wrong

8

9

There's a CLI to iron everything

• Use adr-tools CLI

• Great additions to PRs!

• Keep it simple

Start now!

10

Example: UK Ministry of Justice

https://github.com/npryce/adr-tools
https://github.com/ministryofjustice/form-builder/tree/master/decisions

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

11

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

12

Your brain can't hold much

What if you had a second brain?

• It holds information

• You tap into at any time

• You can focus on thinking

13

Short-term memory capacity: 7 items

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

wow.

very low tech

such flexible

i haz one!
14

But use it properly

1. Stay Focus

2. Avoid Tunnel Effect

3. Do One Thing

Use Pen & Paper

15

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

16

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

17

Commit more often
Then, commit even more!

18

• Every 5 minutes

• Every 2 minutes

• At every change

• It's faster to retreat and try something different

• Prevents "while we're at it" moments

• Easier to review

Try it for 1h

19

Can you feel the benefits?

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

20

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

21

Brain Dump, with a process

1. Write down your goal

2. Start a 5min timer

3. Try to complete your goal

22

23

Timer rings, that's fine!

1. Note what's blocking you = sub-goals

2. Revert (seriously, do it)

3. Pick a sub-goal, start over

24

Stop, revert, think

25

You completed the goal!

1. Celebrate!

2. Now it's a good moment to Commit

3. Pick another sub-goal, start over

26

Yay, commit, repeat

27

Phase 1: map the terrain

28

Phase 1: map the terrain

29

Phase 1: map the terrain

30

Phase 1: map the terrain

31

Phase 1: map the terrain

32

Phase 2: Productivity strikes

33

Phase 2: Productivity strikes

34

Phase 2: Productivity strikes

35

Phase 2: Productivity strikes

36

Phase 2: Productivity strikes

37

Phase 2: Productivity strikes

38

• Avoid Tunnel Effect

• Stop & ship any time

• mindmup.com to collaborate

There's a book!

39

http://mindmup.com

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

40

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

41

When everything is urgent,
nothing is

42

Eisenhower Matrix
A tool to prioritize stuff

43

Urgent Not Urgent
Im

po
rt

an
t

No
t

Im
po

rt
an

t

DO IT NOW DO IT LATER

DELEGATE IT DROP IT

They can't save you

• They give you the Importance

• But where to find the Urgency?

Static Analysis tools

44

Can we stop delivery for 8 years  

and fix these 2,219 critical issues?

Version Control metadata
Git knows it all!

• How often you touch the code => Code Churn

• 50 files most touched in the past year (that's enough):

45

git log --name-only --since=12.month --format=format: \

 | egrep -v '^$' \

 | sort \

 | uniq -c \

 | sort -nr \

 | head -50

46

Analysis of the Docker engine

DO IT NOW

NOT A PROBLEM

Prioritize Tech Debt
Best ROI for all stakeholders

https://github.com/docker/engine

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

47

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

48

What the system does is more
important than what it should do

49

50

Outdated docs
No test

Sh
or
t
de
ad
li
ne

YOU

Fastest way to write missing tests
High-level recipe

1. Generate an output you can put in a file

51

it("should update quality", () => {

 expect(updateQuality("foo", 0, 0)).toMatchSnapshot()

})

Fastest way to write missing tests
High-level recipe

2. Use tests coverage to find missing inputs

52

Fastest way to write missing tests
High-level recipe

3. Use mutations to verify snapshots

53

it("should update quality", () => {

 expect(updateQuality).toVerifyAllCombinations(

 ["foo", "Aged Brie", "Sulfuras"],

 [-1, 0],

 [0, 1, 2, 50]

)

})

Testing 24 combinations

You can quickly:

• Refactor the code

• Write unit tests on the code you create

• Change behavior using these new tests

• Remove approval tests you don't need

Now you are safe!

54

Detailed version: bit.ly/approval-testing

http://bit.ly/approval-testing

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

55

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

56

57

Exercises to practice your skills

5 stages to practice working with Legacy Code:

1. Gilded Rose kata

2. Tennis Refactoring kata

3. Trip Service kata

4. Trivia kata

5. Baby Steps Timer kata

Coding Katas

58

https://github.com/emilybache/GildedRose-Refactoring-Kata
https://github.com/emilybache/Tennis-Refactoring-Kata
https://github.com/sandromancuso/trip-service-kata
https://github.com/jbrains/trivia
https://github.com/dtanzer/babystepstimer

When to practice?

• At home, if you're lucky

• Use company's training budget

• 1h "meeting" every Sprint, with other devs

• Code Retreat:

• Full day practice, free

• Friday and/or Saturday (Global Day, November)

59

https://www.coderetreat.org/
https://www.coderetreat.org/

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

60

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

61

Bonus Stage

62

Going Further

63

Legacy Code: First Aid Kit
> understandlegacycode.com/first-aid-kit

‣ 14 techniques to quickly and safely rescue a codebase

‣ ~200 pages

‣ PDF, EPUB, and MOBI

‣ Light & Dark themes

‣ 3 printable cheat sheets + 1 exercise sheet

30% discount with this link > bit.ly/first-aid-menders

https://understandlegacycode.com/first-aid-kit/
http://bit.ly/first-aid-menders

1. ADRs

2. Brain Dump

3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas

64

End Credits

• https://www.fontmirror.com/determination

• http://pixelartmaker.com/

• http://www.addletters.com/

• https://vectorpixelstar.itch.io/

• https://www.pinclipart.com/

• https://nostalgic-css.github.io/NES.css/

65

https://www.fontmirror.com/determination
http://pixelartmaker.com/
http://www.addletters.com/
https://vectorpixelstar.itch.io/
https://www.pinclipart.com/
https://nostalgic-css.github.io/NES.css/

