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Outdated docs
No test
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Nicolas Carlo
 @nicoespeon


Tech Lead @ Busbud
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understandlegacycode.com
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3. Over-committing

4. Mikado Method

5. Hotspots Analysis

6. Approval Testing

7. Coding Katas
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Architecture Decision Records
Never gets outdated!

• Log decision taken now to revisit in the future


• Detail the context around the decision


• You can't be wrong
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There's a CLI to iron everything

• Use adr-tools CLI 


• Great additions to PRs! 


• Keep it simple

Start now!
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Example: UK Ministry of Justice

https://github.com/npryce/adr-tools
https://github.com/ministryofjustice/form-builder/tree/master/decisions
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Your brain can't hold much

What if you had a second brain? 


• It holds information


• You tap into at any time


• You can focus on thinking
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Short-term memory capacity: 7 items 

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two


wow.

very low tech

such flexible

i haz one!
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But use it properly

1. Stay Focus


2. Avoid Tunnel Effect


3. Do One Thing

Use Pen & Paper
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Commit more often
Then, commit even more!
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• Every 5 minutes


• Every 2 minutes


• At every change



• It's faster to retreat and try something different 


• Prevents "while we're at it" moments


• Easier to review

Try it for 1h
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Can you feel the benefits?
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Brain Dump, with a process

1. Write down your goal


2. Start a 5min timer


3. Try to complete your goal
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Timer rings, that's fine!

1. Note what's blocking you = sub-goals


2. Revert (seriously, do it)


3. Pick a sub-goal, start over
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Stop, revert, think
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You completed the goal!

1. Celebrate!


2. Now it's a good moment to Commit


3. Pick another sub-goal, start over
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Yay, commit, repeat
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Phase 1: map the terrain
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Phase 1: map the terrain
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Phase 2: Productivity strikes
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Phase 2: Productivity strikes
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Phase 2: Productivity strikes
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• Avoid Tunnel Effect


• Stop & ship any time


• mindmup.com to collaborate

There's a book!
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http://mindmup.com
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When everything is urgent, 
nothing is
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Eisenhower Matrix
A tool to prioritize stuff

43

Urgent Not Urgent
Im

po
rt

an
t

No
t 

Im
po

rt
an

t

DO IT NOW DO IT LATER

DELEGATE IT DROP IT



They can't save you

• They give you the Importance


• But where to find the Urgency?

Static Analysis tools
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Can we stop delivery for 8 years  

and fix these 2,219 critical issues?



Version Control metadata
Git knows it all!

• How often you touch the code => Code Churn


• 50 files most touched in the past year (that's enough):
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git log --name-only --since=12.month --format=format: \

 | egrep -v '^$' \

 | sort \

 | uniq -c \

 | sort -nr \

 | head -50
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Analysis of the Docker engine

DO IT NOW

NOT A PROBLEM

Prioritize Tech Debt
Best ROI for all stakeholders

https://github.com/docker/engine
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What the system does is more 
important than what it should do
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Outdated docs
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Fastest way to write missing tests
High-level recipe

1. Generate an output you can put in a file
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it("should update quality", () => {

  expect(updateQuality("foo", 0, 0)).toMatchSnapshot()

})



Fastest way to write missing tests
High-level recipe

2. Use tests coverage to find missing inputs
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Fastest way to write missing tests
High-level recipe

3. Use mutations to verify snapshots
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it("should update quality", () => {

  expect(updateQuality).toVerifyAllCombinations(

    ["foo", "Aged Brie", "Sulfuras"],

    [-1, 0],

    [0, 1, 2, 50]

  )

})

Testing 24 combinations



You can quickly:


• Refactor the code


• Write unit tests on the code you create


• Change behavior using these new tests


• Remove approval tests you don't need

Now you are safe!
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Detailed version:  bit.ly/approval-testing

http://bit.ly/approval-testing
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Exercises to practice your skills

5 stages to practice working with Legacy Code:


1. Gilded Rose kata


2. Tennis Refactoring kata


3. Trip Service kata


4. Trivia kata


5. Baby Steps Timer kata

Coding Katas
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https://github.com/emilybache/GildedRose-Refactoring-Kata
https://github.com/emilybache/Tennis-Refactoring-Kata
https://github.com/sandromancuso/trip-service-kata
https://github.com/jbrains/trivia
https://github.com/dtanzer/babystepstimer


When to practice?

• At home, if you're lucky


• Use company's training budget


• 1h "meeting" every Sprint, with other devs


• Code Retreat: 


• Full day practice, free


• Friday and/or Saturday (Global Day, November)
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https://www.coderetreat.org/
https://www.coderetreat.org/
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Bonus Stage
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Going Further
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Legacy Code: First Aid Kit
> understandlegacycode.com/first-aid-kit

‣ 14 techniques to quickly and safely rescue a codebase

‣ ~200 pages

‣ PDF, EPUB, and MOBI

‣ Light & Dark themes

‣ 3 printable cheat sheets + 1 exercise sheet

30% discount with this link > bit.ly/first-aid-menders

https://understandlegacycode.com/first-aid-kit/
http://bit.ly/first-aid-menders
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End Credits

• https://www.fontmirror.com/determination 


• http://pixelartmaker.com/ 


• http://www.addletters.com/ 


• https://vectorpixelstar.itch.io/  


• https://www.pinclipart.com/ 


• https://nostalgic-css.github.io/NES.css/ 
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https://www.fontmirror.com/determination
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